GEOFON PROJECT #04-4304-480 JET PROPULSION LAB 4800 OAK GROVE DRIVE LA CANADA. CA

HP Labs Project #GF071101W1
SHIMADZU GC-14A FRONT
VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8021) ANALYSES OF SOIL VAPOR
AREA COUNTS

SAMPLE NAME	SVW28-VPA-021 SV	W28-VPA-021 S	VW28-VPD-022 S	SVW28-VPD-022 S	VW28-VPE-023 S	VW28-VPE-023	SVW28-VPE-024	SVW28-VPE-02
				•			DUP	DUI
DATE	07/12/01	07/12/01	07/12/01	07/12/01	07/12/01	07/12/01	07/12/01	07/12/0
ANALYSIS TIME	9:45	9:45	10:11	10:11	11:03	11:03	11:29	11:29
SAMPLING DEPTH (feet)	20	20	85	85	105	105	105	109
VOLUME WITHDRAWN (cc)	140	140	380	380	480	480	480	480
VOLUME INJECTED	1	1	1	1	1	-1	. 1	1
DILUTION FACTOR	1	1	1	1	1	1	1	1
	RT	AREA	RT	AREA	ŔŦ	AREA	RT	AREA
CARBON TETRACHLORIDE	nd	nd	nd	nd	nd	nd	nd -	no
CHLOROETHANE	nd	nd	nd	nd	nd	nd	nd	no
CHLOROFORM	nd -	nd	- nd	nd	nd	nd	nd	no
1,1-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	no
1,2-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd	- nd	no
1,1-DICHLORO ETHENE	nd	nd	nd	nd nd	nd	nd	nd	no
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	no
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nđ	nd	. nd	nd	no
DICHLOROMETHANE	nd	nd	nd	nd	nd	nd	nd	no
TETRACHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd .	no
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	, no
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	no
1,1,1-TRICHLORO ETHANE	nd	nd	. nd	nd	nd	nd	nd	no
1,1,2-TRICHLORO ETHANE	nd	· nd	nd	nd '	nd	nd	nd	no
TRICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	no
VINYL CHLORIDE	nd	nd	nd	nd	nd	nd	nd	no
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	nd	nd	no
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd	nd	nd	. nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	nd	nd	nd	nd	nd	nd	nd	nd
BENZENE	nd	nd	nd	nd	nd	nd	nd	nd
CHLOROBENZENE	nd	nd	nd	nd	nd	nd	nd	nd
ETHYLBENZENE	nd	nd	nd	nd	nd	nd	nd	nd
TOLUENE	nd	nd	nd	nd	nd	nd	nd	nd
m&p-XYLENES	nd	nd	nd	nd	nd	nd	nd	nd
o-XYLENE	nd	nd	nd	nd	nd	nd	nd	nd
SURROGATES								
1,4 DIFLUORO BENZENE	10.0	27.4	10.0	27.5	10.1	27.6	10.0	27.0
4 BROMOFLUORO BENZENE	21.3	70.3	21.3	70.4	21.3	70.3	21.3	69.0

ANALYSES PERFORMED ON-SITE IN CA DOHS MOBILE LABORATORY (CERT #1745)

GEOFON PROJECT #04-4304-480 JET PROPULSION LAB 4800 OAK GROVE DRIVE LA CANADA, CA

HP Labs Project #GF071101W1
SHIMADZU GC-14A FRONT
VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8021) ANALYSES OF SOIL VAPOR
AREA COUNTS

SAMPLE NAME	BLANK	BLANK	SVW35-VPD- S	VW35-VPD-	SVW35-VPE-	SVW35-VPE-	SVW35-VPI-	SVW35-VPI-	SVW36-VPB-	SVW36-VPB-
	r ! !		025	025	026	026	027	027	028	028
DATE	07/13/01	07/13/01	07/13/01	07/13/01	07/13/01	07/13/01	07/13/01	07/13/01	07/13/01	07/13/01
ANALYSIS TIME	5:59	5:59	6:25	6:25	6:51	6:51	7:17	7:17	7:46	7:46
SAMPLING DEPTH (feet)			60	60	80	80	140	140	35	35
VOLUME WITHDRAWN (cc)	i	-	300	300	380	380	620	620	200	200
VOLUME INJECTED	1	1	1	1	1	1	1	1	1	1
DILUTION FACTOR	1	1	1	1	1	1	1	1	1	1
	RT	AREA	RT	AREA	RT	AREA	ŔŤ	AREA	RT	AREA
CARBON TETRACHLORIDE	nd	nd	nd	nd	nd	nd	nd	nd	9.3	2891
CHLOROETHANE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
CHLOROFORM	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
1,2-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd		nd
1,1-DICHLORO ETHENE	nd_	nd	nd	nd	nd	nd	nd	nd	5.1	1.1
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	, nd	nd	nd	nd	nd	nd	nd
DICHLOROMETHANE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TETRACHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
1,1,1-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd	8.8	2019
1,1,2-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nđ	nd	nd	nd
TRICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd	10.8	25.1
VINYL CHLORIDE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	nd	nd	nd	nd	nd	nd	4.9	416	nd	nd
BENZENE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
CHLOROBENZENE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
ETHYLBENZENE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TOLUENE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
m&p-XYLENES	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
o-XYLENE	nd	nd	nd	nd	nd	nd	nd [*]	nd	nd	nd
SURROGATES							,			
1,4 DIFLUORO BENZENE	10.0	25.9	10.0	26.8	10.0	26.3	10.0	27.9	10.0	27.1
4 BROMOFLUORO BENZENE	21.3	66.4	21.3	69.4	21.3	67.0	21.3	71.2	21.3	68.5
ND INDICATES NOT DETECTED AT A DETECTION	LIMIT OF 1.0 UG	/L-VAPOR FO	OR EACH COMP	POUND						

ANALYSES PERFORMED ON-SITE IN CA DOHS MOBILE LABORATORY (CERT #1745)

GEOFON PROJECT #04-4304-480 JET PROPULSION LAB 4800 OAK GROVE DRIVE LA CANADA, CA

HP Labs Project #GF071101W1
SHIMADZU GC-14A FRONT
VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8021) ANALYSES OF SOIL VAPOR
AREA COUNTS

SAMPLE NAME	SVW36-VPC-	SVW36-VPC-	SVW36-VPC- S	SVW36-VPC-	SVW37-VPE-	SVW37-VPE- S	SVW33-VPA-	SVW33-VPA-	SVW33-VPD- S	SVW33-VPD-
	029	029	030 DUP	030 DUP	031	031	032	032	033	033
DATE	07/13/01	07/13/01	07/13/01	07/13/01	07/13/01	07/13/01	07/13/01	07/13/01	07/13/01	07/13/01
ANALYSIS TIME	8:12	8:12	8:37	8:37	9:03	9:03		0:00	9:55	9:55
SAMPLING DEPTH (feet)	55	55	55	55	92	92	20	20	85	85
VOLUME WITHDRAWN (cc)	280	280	400	400	430	430	140	140	400	400
VOLUME INJECTED	1	1	1	1	1	1	. 1	1	1	1
DILUTION FACTOR	1	1	1	1	1	1	1	1	1	1
	RT	AREA	RT	AREA	RT	AREA	RT	AREA	RT	AREA
CARBON TETRACHLORIDE	9.3	5771	9.3	4508	nd	nd	nd	nd	9.3	818
CHLOROETHANE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
CHLOROFORM	8.1	219	nd	nd	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
1,2-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHENE	5.2	3.2	5.1	2.9	nd	nd	nd	nd	nd	nd
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd	. nd	nd
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	, nd	nd	nd	nd	nd	nd	nd
DICHLOROMETHANE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TETRACHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
1,1,1-TRICHLORO ETHANE	8.8	4544	8.8	4297	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TRICHLORO ETHENE	10.8	52.9	10.7	45.5	nd	nd	nd	. nd	10.8	3.1
VINYL CHLORIDE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	nd	nd	nd	nd	nd	nd	4.9	219	5.0	122
BENZENE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
CHLOROBENZENE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
ETHYLBENZENE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TOLUENE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
m&p-XYLENES	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
o-XYLENE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
SURROGATES										
1,4 DIFLUORO BENZENE	10.0	26.2	10.0	28.5	10.0	28.7	10.0	29.0	10.0	28.3
4 BROMOFLUORO BENZENE	21.3	66.6	21.3	73.0	21.3	73.6	21.3	74.2	21.3	72.2
ND INDICATES NOT DETECTED AT A DETECTION	LIMIT OF 1.0 U	G/L-VAPOR FO	R EACH COM	POUND		.=12				

ANALYSES PERFORMED ON-SITE IN CA DOHS MOBILE LABORATORY (CERT #1745)

GEOFON PROJECT #04-4304-480 JET PROPULSION LAB 4800 OAK GROVE DRIVE LA CANADA, CA

HP Labs Project #GF071101W1 SHIMADZU GC-14A FRONT

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8021) ANALYSES OF SOIL VAPOR AREA COUNTS

SAMPLE NAME	SVW33-VPE-	SVW33-VPE-	SVW33-VPF-	SVW33-VPF-	SVW33-VPF-	SVW33-VPF	SVM33-VPG	- SVW33-VPG-	C/W/SS //D (SVW33-VPJ
	034	. 034	035	035	036 DUP	036 DUF				
DATE	07/13/01	07/13/01	07/13/01	07/13/01	07/13/01	07/13/01				07/13/01
ANALYSIS TIME	10:22	10:22	11:12	11:12	11:38		:			
SAMPLING DEPTH (feet)	105	105	120	120					•	200
VOLUME WITHDRAWN (cc)	480	480	540	540	620	620	1	620	860	860
VOLUME INJECTED	1	1	1	1	1	1	1	1	1	000
DILUTION FACTOR	1	1	1	1	1	1	1	1	1	1
	RT	AREA	RT	AREA	RT	AREA	RT	AREA	RT	AREA
CARBON TETRACHLORIDE	9.3	2153	9.3	1000	9.3	1027	9.3		nd	nd
CHLOROETHANE	nd	nd	nd	nd	nd	nd			nd	nd
CHLOROFORM	nd	nd	nd	nd	nd	nd		214	nd	nd
1,1-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd			nd	nd
1,2-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd			nd	nd
1,1-DICHLORO ETHENE	5.1	1.3	nd	nd	nd	nd			nd	nd
CIS-1,2-DICHLORO ETHENE	nd	nd	. nd	nd	nd	nd		nd	nd	nd
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	, nd	nd	nd		nd	nd	nd
DICHLOROMETHANE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TETRACHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nđ	nd	nd	nd	nd	nd
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
1,1,1-TRICHLORO ETHANE	nd	nd	nd	nd .	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TRICHLORO ETHENE	nd	nd	nd	nd	10.8	2.7	nd	nd	nd	nd
VINYL CHLORIDE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nđ	nd	nd	nd	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	5.0	148	5.0	83.5	nd	nd	nd	nd	nd	nd
BENZENE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
CHLOROBENZENE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
ETHYLBENZENE	nd	nd	nd	nd	nd	nd	nd	nd	nd -	nd
TOLUENE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
m&p-XYLENES	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
o-XYLENE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
SURROGATES				**				, iu	110	110
1,4 DIFLUORO BENZENE	10.0	27.4	10.0	27.8	10.0	27.4	10.0	26.9	10.0	07.7
4 BROMOFLUORO BENZENE	21.3	70.6	21.3	71.1	21.3	73.4	21.3	69.0	21.3	27.7
ND INDICATES NOT DETECTED AT A DETECTION	LIMIT OF 1.0 U	G/L-VAPOR FO	OR EACH COM	POLIND					41.3	70.9

ANALYSES PERFORMED ON-SITE IN CA DOHS MOBILE LABORATORY (CERT #1745)

GEOFON PROJECT # 04-4304-480 JET PROPULSION LAB 4800 OAK GROVE DRIVE LA CANADA, CA

HP Labs Project #GF071101W1 GC SHIMADZU 14A RIGHT

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8021) ANALYSES OF SOIL VAPOR

	BLANK	SVW35-VPD-025	SVW35-VPE-026	SVW35-VPI-027	SVW36-VPB-028	SVW36-VPC-029	SVW36-VPC-030 DUP	SVW37-VPE-031
DATE	07/13/01	07/13/01	07/13/01	07/13/01	07/13/01	07/13/01	07/13/01	07/13/01
ANALYSIS TIME	05:59	06:25	06:51	07:17	07:46	08:12	08:37	09:03
SAMPLING DEPTH (feet)		60	80	140	35	55	55	92
VOLUME WITHDRAWN (cc)		300	380	620	200	280	400	430
VOLUME INJECTED	. 1	1	1	1 .	1	1	. 1	1
DILUTION FACTOR	1	1	. 1	1	1	1	. 1	1
CARBON TETRACHLORIDE	nd	nd	nd	nd	18	36	28	nd
CHLOROETHANE	nd	nd	nd	nd	nd	nd	nd	nd
CHLOROFORM	- nd	nd	nd	nd	nd	1.0	nd	nd
1,1-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1,2-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHENE	nd	nd	nd	nd	1.0	3	2.5	nd
CIS-1,2-DICHLORO ETHENE	nd	nd .	nd nd	nd	nd	nd	nd	nd
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd
DICHLOROMETHANE	nd	nd	nd ·	nd	nd	nd	nd	nd
TETRACHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1,1,1-TRICHLORO ETHANE .	nd	nd	nd	nd	12	27	26	nd
1,1,2-TRICHLORO ETHANE	nd	nd	. nd	nd	nd	nd	nd	nd
TRICHLORO ETHENE	nd	nd	nd	nd	12	26	22	nd
VINYL CHLORIDE	nd	nd	nd	nd	nd	nd	nd	nd
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	. nd	nd	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	nd .	nd	nd	5.4	nd	nd	nd	nd
BENZENE	nd	nd	nd	nd	nd	nď	nd	nd
CHLOROBENZENE	nd	nd	nd	nd	nd	nd	nd	nd
ETHYLBENZENE	nd	nd	nd	nd	nd ·	nd	nd	nd
TOLUENE	nd	nd	nd	nd	nd	nd	nd	nd
m&p-XYLENES	nd	nd	nd	nd	nd	nd	nd	nd
o-XYLENE	nd	nd	nd	nd	nd	nd	nd	nd
SURROGATES					····			
1,4 DIFLUORO BENZENE	92%	95%	93%	99%	96%	93%	101%	102%
4 BROMOFLUORO BENZENE	85%	89%	86%	91%	88%	85%	94%	94%

ANALYSES PERFORMED ON-SITE IN CA DOHS MOBILE LABORATORY (CERT #1745)

ANALYSES PERFORMED BY: MARK BURKE

GEOFON PROJECT # 04-4304-480 JET PROPULSION LAB 4830 OAK GROVE DRIVE LA CANADA, CA

HP Labs Project #GF071101W1
GC SHIMADZU 14A RIGHT
VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8021) ANALYSES OF SOIL VAPOR

	SVW33-VPA-032	SVW33-VPD-033	SVW33-VPE-034	SVW33-VPF-035	SVW33-VPF-036 DUP	SVW33-VPG-037	SVW33-VPJ-038
DATE	07/13/01	07/13/01	07/13/01	07/13/01	07/13/01	07/13/01	07/13/01
ANALYSIS TIME	00:00	09:55	10:22	11:12	11:38	12:03	12:28
SAMPLING DEPTH (feet)	20	85	105	120	120	140	200
VOLUME WITHDRAWN (cc)	140	400	480	540	620	620	860
VOLUME INJECTED	1	1	1	1	. 1	1	1
DILUTION FACTOR	1	1	1	11	1	1	. 1
CARBON TETRACHLORIDE	nd	5.1	13	6.2	6.3	3.2	nd
CHLOROETHANE	nd	nd	nd	nd	nd	nd	nd
CHLOROFORM	nd	nd	nd	nd	nd	1.0	nd
1.1-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd
1.2-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHENE	nd	nd	1.2	nd	nd	nd	nd
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	· nd
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd
DICHLOROMETHANE	nd	nd	nd	nd	nd	nd	nd ·
TETRACHLORO ETHENE	nd ·	nd	nd	nd	nd	nd	nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd
1,1,1-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLORO ETHANE	nd	nd	nd	nd	nď	nd	nd
TRICHLORO ETHENE	nd	1.5	nd	nd	1.3	nd	nd
VINYL CHLORIDE	nd	nd	nd	nd	nd	nd	nd
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	2.9	1.6	1.9	1.1	nd	nd	nd
BENZENE	nd	nd	nd	nd	nd	nd	nd
CHLOROBENZENE	nd	nd	nd	nd	nd	nd	nd
ETHYLBENZENE	nd	nd	nd	nd	nd	nď	nd
TOLUENE	nd	nd	nd	nđ	nd	nd	nd
m&p-XYLENES	nd	nd	nd	nd	nd	nd	nd
o-XYLENE	nd	nd	nd	nd	nd	nd	nd
SURROGATES					·		
1,4 DIFLUORO BENZENE	103%	100%	97%	99%	97%	95%	98%
4 BROMOFLUORO BENZENE	95%	93%	91%	91%	94%	. 88%	91%

ANALYSES PERFORMED ON-SITE IN CA DOHS MOBILE LABORATORY (CERT #1745)

ANALYSES PERFORMED BY: MARK BURKE

GEOFON PROJECT # 04-4304-480 JET PROPULSION LAB 4800 OAK GROVE DRIVE LA CANADA, CA

HP Labs Project #GF071101W1 GC SHIMADZU 14A RIGHT

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8021) ANALYSES OF SOIL VAPOR

VOLATILE HALOGENATED AND AROMATIC TITOROG	BLANK	SVW34-VPD-039	SVW34-VPF-040	SVW34-VPH-041	SVW34-VPH-042 DUP	SVW38-VPA-043	SVW38-VPB-044
DATE	07/16/01	07/16/01	07/16/01	07/16/01	07/16/01	07/16/01	07/16/01
ANALYSIS TIME	06:06	06:32	06:58	07:27	07:53	08:19	08:44
SAMPLING DEPTH (feet)		65	95	118	118	25	45
VOLUME WITHDRAWN (cc)		320	440	530	610	160	240
VOLUME INJECTED	1	1	1	1	1	1	1
DILUTION FACTOR	1	1	1 .	1	1	1	1
CARBON TETRACHLORIDE	nd	nd	nd	1.9	1.5	nd	nd .
CHLOROETHANE	nd	nd	nd	nd	nd	nd	nd
CHLOROFORM	nd	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHANE	nd	nd	nd	nd	nd	nđ	nd
1,2-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHENE	nd	nd	, nd	nd	nd	nd	nd
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd
DICHLOROMETHANE	nd	nd	nd ·	nd	nd	· nd	nd
TETRACHLORO ETHENE	nd	nd	^a nd	nd	nd	nd	nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd ·
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd
1,1,1-TRICHLORO ETHANE	nd	nd	nď	nd	nd	nd	nd
1,1,2-TRICHLORO ETHANE	nd	nd	nd .	· nd	nd	nd	nd .
TRICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd
VINYL CHLORIDE	nd	nd	nd	nd	nd	nd	nd
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	nd	nd	nd	nd	nd	nd	nd
BENZENE	nd	nd	nd	nd	nd	nd	nd
CHLOROBENZENE	nd	nd	nd	nd	nd	nd	nd
ETHYLBENZENE	nd	nd	nd	nd	nd	nd	nd
TOLUENE	nd	nd	nd	nd	nd	nd	nd
m&p-XYLENES	nd	nd	nd	nd	nd	nd	nd
o-XYLENE	nd	nd	nd	nd	. nd	nd	nd
SURROGATES							
1.4 DIFLUORO BENZENE	98%	97%	97%	94%	96%	101%	96%
4 BROMOFLUORO BENZENE ND INDICATES NOT DETECTED AT A DETECTION LI	92%	91%	90%	87%	90%	89%	90%

ANALYSES PERFORMED ON-SITE IN CA DOHS MOBILE LABORATORY (CERT #1745)

ANALYSES PERFORMED BY: MARK BURKE

GEOFON PROJECT # 04-4304-480 JET PROPULSION LAB 4800 OAK GROVE DRIVE LA CANADA, CA

HP Labs Project #GF071101W1
GC SHIMADZU 14A RIGHT
VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8021) ANALYSES OF SOIL VAPOR

07/16/01 09:11 80 380 1	07/16/01 09:37 110 500	07/16/01 10:03	07/16/01 10:30	07/16/01	07/16/01
80	110		10:30		
		.=-		11:21	11:47
380	500	170	170	20	50
1		740	830	140	260
	1	1 -	. 1	1	1
1	1	1	1	1	1
nd	nd	nd	nd	nd	nd
					nd
					nd
				***	nd
nd	nd				nd
nd	nd				nd
nd	nd				nd .
nd	nd	nd			nd
nd	nd ·	nd			· nd
nd	nd				nd
nd	nd	nd			nd
nd	nd	nd			nd
nd	nd	nd	nď		nd
nd	nd	nd	: nd	nd	nd
nd	nd	nd	nd	nd	nd
nd	nd	nd	nd		nd
nd	nd	nd .	nd		nd
nd	nd	nd	nd		nd
nd	nd	nd	nd	nd	nd
nd	nd	nd	nd	nd	nd
nd	nd	nd	nd	nd	nd
nd	nd	nd	nd	nd	nd
nď	nd	nd	nd	nd	nd
nd	nd	nd	nd		nd
nd	nd	ņd	nd	nd	nd
97%	97%	95%	97%	98%	98%
91%	90%	88%	90%		91%
	nd n	nd n	nd nd nd nd nd nd	nd nd nd nd nd nd nd<	nd nd nd nd nd nd nd nd nd nd nd nd

ANALYSES PERFORMED ON-SITE IN CA DOHS MOBILE LABORATORY (CERT #1745)

ANALYSES PERFORMED BY: MARK BURKE

GEOFON PROJECT #04-4304-480 JET PROPULSION LAB 4800 OAK GROVE DRIVE LA CANADA, CA

HP Labs Project #GF071101W1
SHIMADZU GC-14A FRONT
VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8021) ANALYSES OF SOIL VAPOR
ARFA COUNTS

SAMPLE NAME	BLANK	HI ANK:	S\/\//34_\/PD_ S	\/\/\/3 <i>1_</i> \/DD_: 9	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	6/W/34 //DE ; 6	/VV/34 //DII	SVW34-VPH-S	CLAMPA MOLL C	LICIL VOVA
	DEAN	DEAINIC	039	039	040	040	041	041	042 DUP	042 DUP
DATE	07/16/01	07/16/01	07/16/01	07/16/01	07/16/01	07/16/01	07/16/01	07/16/01	07/16/01	07/16/01
ANALYSIS TIME	6.06	6:06	6:32	6:32	6:58	6:58	7:27	7:27	7:53	7:53
SAMPLING DEPTH (feet)	0.00	0.00	65	65	95	95	118	118	118	118
OLUME WITHDRAWN (cc)			320	320	440	440	530	530	610	610
OLUME INJECTED	1	1	,520	1	440	1	330	330	. 010	610
DILUTION FACTOR	1	1	1	1	1	1	1	1	1	1
ALO HONT ACTOR	RT	AREA	RT	AREA	RT	AREA	RT	AREA	RT	AREA
CARBON TETRACHLORIDE	nd	nd	nd	nd	nd	nd	9.3	314.0	9.3	241.0
CHLOROETHANE	nd	nd	nd	nd	nd	nd	nd	914.0 nd	9.5 nd	241.0 nd
CHLOROFORM	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
1.1-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
1.2-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd		
1,1-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd		nd	nd
CIS-1.2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd nd	nd nd	nd
FRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd		nd	nd
DICHLOROMETHANE	nd	nd	nd	nd		nd		nd	nd	nd
TETRACHLORO ETHENE	nd	nd	nd		nd		nd	nd	nd	nd
	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2,2-TETRACHLORO ETHANE	!			nd t	nd t	nd	nd	nd	nd	nd
1,1,1-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TRICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
VINYL CHLORIDE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	nd	. nd	. nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
BENZENE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
CHLOROBENZENE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
ETHYLBENZENE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TOLUENE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
n&p-XYLENES	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
o-XYLENE	nd	nd	nd	nd	nd -	nd	nd	· nd	nd	nd
SURROGATES										i
1,4 DIFLUORO BENZENE	10.0	27.5	10.0	27.4	10.0	27.3	10.0	26.6	9.9	27.2
4 BROMOFLUORO BENZENE	21.2	71.5	21.2	70.6	21.2	70.1	21.2	67.8	21.2	70.4
ND INDICATES NOT DETECTED AT A DETECTION I	LIMIT OF 1.0 UG/	L-VAPOR FO	R EACH COMF	OUND						

ANALYSES PERFORMED ON-SITE IN CA DOHS MOBILE LABORATORY (CERT #1745)

GEOFON PROJECT #04-4304-480 JET PROPULSION LAB 4800 OAK GROVE DRIVE LA CANADA, CA

HP Labs Project #GF071101W1
SHIMADZU GC-14A FRONT
VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8021) ANALYSES OF SOIL VAPOR
AREA COLINTS

SAMPLE NAME	SVW38-VPA-043 S	SVW38-VPA-043	SVW38-VPB-044 :	SVW38-VPB-044	SVW38-VPD-045	SV/V38-VPD-045	SV/M38-VPF-046	S\/\\/38_\/PF_046
SAIVII EL IVANIE							011100 111 040	
DATE .	07/16/01	07/16/01	07/16/01	07/16/01	07/16/01	07/16/01	07/16/01	07/16/01
ANALYSIS TIME	8:19	8:19	8:44	8:44	9:11	9:11	9:37	9:37
SAMPLING DEPTH (feet)	25	25	45	45	80	80	110	110
VOLUME WITHDRAWN (cc)	160	160	240	240	380	380	500	500
VOLUME INJECTED	1	1	1	1	1	1	1	1
DILUTION FACTOR	1	1	1	1	. 1	· 1	1	1
	RT	AREA	RT	AREA	RT	AREA	RT	AREA
CARBON TETRACHLORIDE	nd	nd	nd	nd	nd	nd	nd	nd
CHLOROETHANE	nd	nd	nd	nd	nd	nd	nd	nd
CHLOROFORM	nd -	nd	nd	nd	nd	nd	nd	· nd
1,1-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1,2-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	. nd
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd
DICHLOROMETHANE	nd	nd	nd	nd	nd	nd	nd	nd
TETRACHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1,1,1-TRICHLORO ETHANE	nd	nd	nd	nd	. nd	nd	nd	nd
1,1,2-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
TRICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd
VINYL CHLORIDE	nd	nd	nd	nd	nd	nd	nd	nd
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	nd	nd	nd	nd	nd	nd	nd	nd
BENZENE	nd	nd	nd	nd	nd	nd	nd	nd
CHLOROBENZENE	nd	nd	nd	nd	nd	nd	nd	nd
ETHYLBENZENE	nd	nd	nd	nd	nd	nd	nd	nd
TOLUENE	nd	nd	nd	nd	nd	nd	· nd	nd
m&p-XYLENES	nd	nd	nd	nd	nd	nd	nd	nd
	nd	nd	nd	nd	nd	nd	nd	nd
SURROGATES								
1,4 DIFLUORO BENZENE	10.0	28.4	10.0	27.2	10.0	27.4	10.0	27.4
4 BROMOFLUORO BENZENE	21.3	69.1	21.2	70.0	21.2	70.9	21.2	70.3
ND INDICATES NOT DETECTED AT A DETECTION	N LIMIT OF 1.0 UG/L-V	APOR FOR EACH	COMPOUND					

ANALYSES PERFORMED ON-SITE IN CA DOHS MOBILE LABORATORY (CERT #1745)

ANALYSES PERFORMED BY: MARK BURKE

GEOFON PROJECT #04-4304-480 JET PROPULSION LAB 4800 OAK GROVE DRIVE LA CANADA, CA

HP Labs Project #GF071101W1
SHIMADZU GC-14A FRONT
VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8021) ANALYSES OF SOIL VAPOR
AREA COUNTS

SAMPLE NAME	SVW38-VPJ-047	SVW38-VPJ-047		SVW38-VPJ-048	SVW39-VPA-049	SVW39-VPA-049	SVW39-VPC-050	SVW39-VPC-05
			DUP	DUP				
DATE	07/16/01	07/16/01	07/16/01	07/16/01	07/16/01	07/16/01	07/16/01	07/16/0
ANALYSIS TIME	10:03	10:03	10:30	10:30	11:21	11:21	11:47	11:47
SAMPLING DEPTH (feet)	170	170	170	170	20	20	50	50
VOLUME WITHDRAWN (cc)	740	740	. 830	830	140	140	260	260
VOLUME INJECTED	1	1	1	1	1	1	1	1
DILUTION FACTOR	1	1	1	1	1	1	1	. 1
	RT	AREA	RT	AREA	RT	AREA	RT	AREA
CARBON TETRACHLORIDE	nd	nd	nd	nd	nd	nd	nd	no
CHLOROETHANE	nd	nd	nd	nd	nd	nd	nd	no
CHLOROFORM	nd	nd	nd	nd	nd	nd	nd	no
1,1-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd	. nd	no
1,2-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	no
1,1-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	no
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	- nd	nd	no
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	no
DICHLOROMETHANE	nd	nd	nd	nd	nd	nd	nd	no
TETRACHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	no
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	no
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	. no
1,1,1-TRICHLORO ETHANE	nd	nd	. nd	nd	nd	nd	nd	. no
1,1,2-TRICHLORO ETHANE	nd	nd	nd	nd	, nd	nd	nd	no
TRICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	no
VINYL CHLORIDE	nd	nd	nd	nd	nd	nd	nd	no
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	nd	nd	no
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd	nd	nd	no
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	nd	nd	nd	nd	nd	nd	nd	no
BENZENE	nd	nd	nd	nd	nd	nd	nd	nd
CHLOROBENZENE	nd	nd	nd	nd	nd	nd	nd	nd
ETHYLBENZENE	nd	nd	nd	nd	nd	nd	nd	nd
TOLUENE	nd	nd	nd	nd ·	nd	nd	nd	nd
m&p-XYLENES	nd	nd	nd	nd	nd	nd	nd	nd
o-XYLENE	nd	nd	nd	nd	nd	nd	nd	nd
SURROGATES	<u>`</u>							- 10
1,4 DIFLUORO BENZENE	10.0	26.7	9.9	27.4	10.0	27.7	10.0	27.6
4 BROMOFLUORO BENZENE	21.2	68.7	21.2	70.2	21.2	70.7	21.2	70.7
ND INDICATES NOT DETECTED AT A DETECTION	LIMIT OF 1.0 UG/L-\	APOR FOR EAC	H COMPOUND	 		2-2-		-11

ANALYSES PERFORMED ON-SITE IN CA DOHS MOBILE LABORATORY (CERT #1745)

GEOFON PROJECT # 04-4304-480 JET PROPULSION LAB 4800 OAK GROVE DRIVE LA CANADA, CA

HP Labs Project #GF071101W1 GC SHIMADZU 14A RIGHT

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8021) ANALYSES OF SOIL VAPOR

	BLANK	SVW39-VPD-051	SVW39-VPE-052	SVW39-VPF-053	SVW39-VPF-054 DUP	SVW39-VPI-055	SVW32-VPB-056
DATE	07/17/01	07/17/01	07/17/01	07/17/01	07/17/01	07/17/01	07/17/01
ANALYSIS TIME	06:05	06:30	06:56	07:23	07:50	08:18	08:45
SAMPLING DEPTH (feet)		70	85	100	100	130	40
VOLUME WITHDRAWN (cc)		340	400	460	580	580	220
VOLUME INJECTED	1	1	1	1	1	1	1
DILUTION FACTOR	1	1	1	1	1	1	1
CARBON TETRACHLORIDE	nd	nd ·	nd .	nd	nd .	. , .nd	nd
CHLOROETHANE	nd	nd	nd	nd	nd	nd	nd
CHLOROFORM	nd	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHANE	nd	nd nd	nd	nd	nd	nd	nd
1,2-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHENE	nd	nd	nd ·	nd	nd	nd	nd
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd
DICHLOROMETHANE	nd	nd	nd	nd	nd	nd	nd
TETRACHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd
1,1,1-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLORO ETHANE	nd	nd	nd	, nd	nd	nd	nd
TRICHLORO ETHENE	nd	nd	nd	2.0	1.0	7.9	nd
VINYL CHLORIDE	nd	nd	nd	nd	nd	nd	nd
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd ·	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd -	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	nd	nd	11	11	11	2.4	nd
BENZENE	nd	nd	nd	nd	nd	nd	nd
CHLOROBENZENE	nd	nd	nd	nd	nd	nd	nd
ETHYLBENZENE	nd	nd	nd	nd	nd	nd	nd
TOLUENE	nd	nd	nd	nd	nd	nd	nd
m&p-XYLENES	nd	nd	nd	nd	nd	nd	nd
o-XYLENE	nd	nd	nd	nd	nđ	nd	nd
SURROGATES							
1,4 DIFLUORO BENZENE	96%	99%	98%	98%	101%	97%	94%
4 BROMOFLUORO BENZENE	89%	93%	91%	91%	91%	89%	88%

ANALYSES PERFORMED ON-SITE IN CA DOHS MOBILE LABORATORY (CERT #1745)

ANALYSES PERFORMED BY: MARK BURKE

GEOFON PROJECT # 04-4304-480 JET PROPULSION LAB 4800 OAK GROVE DRIVE LA CANADA, CA

HP Labs Project #GF071101W1 GC SHIMADZU 14A RIGHT

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8021) ANALYSES OF SOIL VAPOR

	SVW32-VPC-057	SVW32-VPE-058	SVW32-VPE-059	SVW32-VPE-060 DUP	SVW32-VPH-061	SVW32-VPI-062	SVW32-VPJ-06
DATE	07/17/01	07/17/01	07/17/01	07/17/01	07/17/01	07/17/01	07/17/01
ANALYSIS TIME	09:11	09:36	10:02	10:27	11:20	11:46	12:12
SAMPLING DEPTH (feet)	55	70	90	90	155	180	195
VOLUME WITHDRAWN (cc)	280	340	420	520	680	780	840
VOLUME INJECTED	1	1	1	·1	1	1	1
DILUTION FACTOR	11	1	11	1	1	.1	1
CARBON TETRACHLORIDE	nd	nd	nd	nd	3.3	nd	nd
CHLOROETHANE	nd	nd	nd	nd	nd	nd	nd
CHLOROFORM	nd	nd	nd	nd	nd	nd -	nd
1.1-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd
1.2-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd
1.1-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd ·	nd
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd
DICHLOROMETHANE	nd	nd	nd ·	nd	nd	nd	nd
TETRACHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nď	nd	nd	· nd
1,1,2,2-TETRACHLORO ETHANE	nd	nď	nd	nd	nd ·	nd	nd
1,1,1-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLORO ETHANE	nd	nď	nd	nd	nd	nd	nd
TRICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd
VINYL CHLORIDE	nd	nd	nd	nd	nd	nd	nd
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	nd	nd	nd	nd	6.4	nd	nd
BENZENE	nd	nd	nd	nd	nd	nd	nd
CHLOROBENZENE	nd	nd	nd	nd	nd	nd	nd
ETHYLBENZENE	nd	nd	nd	nd	nd	nd	nd
roluene	nd	nd	nd	nd	nd	nd ·	nd
n&p-XYLENES	nd	nd	nd	nd	nd	nd	nd
o-XYLENE	nd	nd	nd	nd	nd	nd	nd
SURROGATES							
1,4 DIFLUORO BENZENE	95%	99%	97%	98%	99%	98%	99%
4 BROMOFLUORO BENZENE ND INDICATES NOT DETECTED AT A DETECTION	88%	92%	90%	90%	91%	90%	91%

ANALYSES PERFORMED ON-SITE IN CA DOHS MOBILE LABORATORY (CERT #1745)

ANALYSES PERFORMED BY: MARK BURKE

GEOFON PROJECT #04-4304-480 JET PROPULSION LAB 4800 OAK GROVE DRIVE LA CANADA, CA

HP Labs Project #GF071101W1
SHIMADZU GC-14A FRONT
VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8021) ANALYSES OF SOIL VAPOR
AREA COUNTS

SAMPLE NAME	BLANK	BLANK	SVW39-VPD- S	VW39-VPD-S	VW39-VPE- S	VW39-VPE-IS	VW39-VPF-	SVW39-VPF- S	VW39-VPF-	SVW39-VPF-
<u> </u>		į	051	051	052	052	053	053	054 DUP	054 DUP
DATE	07/17/01	07/17/01	07/17/01	07/17/01	07/17/01	07/17/01	07/17/01	07/17/01	07/17/01	07/17/01
ANALYSIS TIME	6:05	6:05	6:30	6:30	6:56	6:56	7:23	7:23	7:50	7:50
SAMPLING DEPTH (feet)			70	70	85	85	100	100	100	100
VOLUME WITHDRAWN (cc)			340	340	400	400	460	460	580	580
VOLUME INJECTED	1	1	1	1	1	1	1	1	1	1
DILUTION FACTOR	1	1	1	1	. 1	1	1	1	1 1	-1
	RT	AREA	RT	AREA	RT	AREA	RT	AREA	RT	AREA
CARBON TETRACHLORIDE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
CHLOROETHANE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
CHLOROFORM	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
1,2-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd	nđ	nd
1,1-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	, nd	nd	nd	nd	nd	nd	nd
DICHLOROMETHANE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TETRACHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2,2-TETRACHLORO ETHANE	.nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
1,1,1-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd	. nd	nd	nd	nd
TRICHLORO ETHENE	nd	nd	nd	nd	nd	nd	10.7	4.0	10.7	2.1
VINYL CHLORIDE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	nd	nd	nd	nd	4.9	844.0	4.9	837.0	4.9	841.0
BENZENE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
CHLOROBENZENE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
ETHYLBENZENE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TOLUENE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
m&p-XYLENES	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
o-XYLENE	nd	nd	nd	nd	nd	nd	nd	nd	- nd	nd
SURROGATES										
1,4 DIFLUORO BENZENE	10.0	27.1	10.0	28.0	10.0	27.7	10.0	27.7	10.0	28.5
4 BROMOFLUORO BENZENE	21.2	69.3	21.2	72.2	21.2	71.3	21.2	71.3	21.2	70.6
ND INDICATES NOT DETECTED AT A DETECTION L	IMIT OF 1.0 UG/	L-VAPOR FO	R EACH COMP	OUND						

ANALYSES PERFORMED ON-SITE IN CA DOHS MOBILE LABORATORY (CERT #1745)

GEOFON PROJECT #04-4304-480 JET PROPULSION LAB 4800 OAK GROVE DRIVE LA CANADA, CA

HP Labs Project #GF071101W1
SHIMADZU GC-14A FRONT
VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8021) ANALYSES OF SOIL VAPOR
AREA COUNTS

SAMPLE NAME	SVW39-VPI-	SVW39-VPI- S	SVW32-VPB- S	VW32-VPB-IS	SVW32-VPC- S	VW32-VPC- S	VW32-VPE- S	VW32-VPE-IS	VW32-VPE- S	VW32-VPF-
Orivin EE TV WIE	055	055	056	056	057	057	058	058	059	059
DATE	07/17/01	07/17/01	07/17/01	07/17/01	07/17/01	07/17/01	07/17/01	07/17/01	07/17/01	07/17/01
ANALYSIS TIME	8:18	8:18	8:45	8:45	9:11	9:11	9:36	9:36	10:02	10:02
SAMPLING DEPTH (feet)	130	130	40	40	55	55	70	70	90	90
VOLUME WITHDRAWN (cc)	580	580	220	220	280	280	340	340	420	420
VOLUME INJECTED	1	1	1	1	1	1	1	1	1	1
DILUTION FACTOR	1	1	1	1	1	1	1	1	1	1
	RT	AREA	RT	AREA	RT	AREA	RT	AREA	RT	AREA
CARBON TETRACHLORIDE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
CHLOROETHANE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
CHLOROFORM	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
1,2-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
DICHLOROMETHANE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TETRACHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
1,1,1-TRICHLORO ETHANE	nd	nd	. nd	nd	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TRICHLORO ETHENE	10.7	16.1	nd	nd	nd	nd	nd	nd	nd	nd
VINYL CHLORIDE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nđ	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	4.9	184.0	nd	nd	nd	nd	nd	nd	nd	nd
BENZENE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
CHLOROBENZENE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
ETHYLBENZENE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
TOLUENE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nđ
m&p-XYLENES	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
o-XYLENE	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
SURROGATES										
1,4 DIFLUORO BENZENE	10.0	27.3	10.0	26.6	9.9	26.9	10.0	28.0	10.0	27.4
4 BROMOFLUORO BENZENE	21.2	69.7	21.2	68.6	21.2	69.0	21.2	72.0	21.2	70.1
ND INDICATES NOT DETECTED AT A DETECTION	LIMIT OF 1.0 UC	3/L-VAPOR FOI	R EACH COMP	POUND						

ANALYSES PERFORMED ON-SITE IN CA DOHS MOBILE LABORATORY (CERT #1745)

GEOFON PROJECT #04-4304-480 JET PROPULSION LAB 4800 OAK GROVE DRIVE LA CANADA, CA

HP Labs Project #GF071101W1 SHIMADZU GC-14A FRONT

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8021) ANALYSES OF SOIL VAPOR

AREA COUNTS

SAMPLE NAME	SVW32-VPE-	SVW32-VPE-	SVW32-VPH-	SVW32-VPH-S	SVW32-VPI-062 S	SVW32-VPI-062	SVW32-VPJ-	SVW32-VPJ-
	060 DUP	060 DUP	061	061			063	063
DATE	07/17/01	07/17/01	07/17/01	07/17/01	07/17/01	07/17/01	07/17/01	07/17/01
ANALYSIS TIME	10:27	10:27	11:20	11:20	11:46	11:46	12:12	12:12
SAMPLING DEPTH (feet)	90	90	155	155	180	180	195	195
VOLUME WITHDRAWN (cc)	520	520	680	680	780	780	840	840
VOLUME INJECTED	1	1	1	1	1	1	1	1
DILUTION FACTOR	1	1	. 1	. 1	1	1	1	1
	RT	AREA	RT	AREA	RT	AREA	RT	AREA
CARBON TETRACHLORIDE	nd	nd	9.3	535.0	nd	nd	nd	nd
CHLOROETHANE	nd	nd	nd	nd	nd	nd	nd	nd
CHLOROFORM	nd	nd	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1,2-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd∙	nd
1,1-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd
TRANS-1,2-DICHLORO ETHENE	nd nd	nd	nd	. nd	nd	nd	nd	nd
DICHLOROMETHANE	nd	nd	- nd	nd	nd	nd	nd	nd
TETRACHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
1,1,1-TRICHLORO ETHANE	nd	nd	. nd	nd	nd	nd	nd .	nd
1,1,2-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd	nd
TRICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd	nd
VINYL CHLORIDE	nd	nd	nd	nd	nd	nd	. nd	nd
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	nd	nd	5.0	490.0	nd	nd	nd	nd
BENZENE	nd	nd	nd	nd	nd	nd	nd	nd
CHLOROBENZENE	nd	nd	nd	nd	nd	nd	nd	nd
ETHYLBENZENE	nd	nd	nd	nd	nd	nd	nď	nd
TOLUENE	nd	nd	nd	nd	nd	nd	nd	nd
m&p-XYLENES	nd	nd	nd	nd	nd	nd	nd	nd
o-XYLENE	nd	nd	nd	nd	nd	nđ	nd	nd
SURROGATES								i
1,4 DIFLUORO BENZENE	10.0	27.5	10.0	28.0	10.0	27.5	10.0	27.8
4 BROMOFLUORO BENZENE	21.2	70.5	21.2	71.2	21.2	70.4	21.2	70.7
ND INDICATES NOT DETECTED AT A DETECTION L	IMIT OF 1.0 UG/L-	VAPOR FOR EAC	CH COMPOUND					

ANALYSES PERFORMED ON-SITE IN CA DOHS MOBILE LABORATORY (CERT #1745)

GEOFON PROJECT # 04-4304-480 JET PROPULSION LAB 4800 OAK GROVE DRIVE LA CANADA, CA

HP Labs Project #GF071101W1 GC SHIMADZU 14A RIGHT

VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8021) ANALYSES OF SOIL VAPOR

	BLANK	SVW37-VPA-064	SVW37-VPD-065	SVW37-VPD-066 DUP	SVW37-VPE-067	SVW37-VPH-068	SVW37-VPI-06
DATE	07/18/01	07/18/01	07/18/01	07/18/01	07/18/01	07/18/01	07/18/01
ANALYSIS TIME	05:53	06:20	06:46	07:13	07:39	08:06	08:30
SAMPLING DEPTH (feet)	00.55	25	80	80	100	155	170
VOLUME WITHDRAWN (cc)		160	380	480	460	680	740
VOLUME INJECTED	1	100	1	1	1	1	1
DILUTION FACTOR	1	1	1	1	11	.1	1
	- 4						
CARBON TETRACHLORIDE	nd	nd	nd	nd	nd	nd	
CHLOROETHANE	nd	nd	nd	nd	nd	nd	nd
CHLOROFORM	nd	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHANE	nd	nd	nd	· nd	nd	nd	nd
1,2-DICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd
1,1-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd
CIS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd
FRANS-1,2-DICHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd
DICHLOROMETHANE	nd	nd	nd ·	nd	nd	nd	· nd
TETRACHLORO ETHENE	nd	nd	nd	nd	nd	nd	nd
1,1,1,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd
1,1,2,2-TETRACHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd
1,1,1-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd
1,1,2-TRICHLORO ETHANE	nd	nd	nd	nd	nd	nd	nd
TRICHLORO ETHENE	nd	nd	nd	nd	1.4	nd	nd
VINYL CHLORIDE	nd	nd	nd	nd	nd	nd	nd
TRICHLOROFLUOROMETHANE (FR11)	nd	nd	nd	nd	nd	nd	nd
DICHLORODIFLUOROMETHANE (FR12)	nd	nd	nd	nd .	nd	nd	nd
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	nd	nd	nd	nd	nd	nd	nd
BENZENE	nd	nd	nd	nd	nd	nd	nd
CHLOROBENZENE	nd	nd	nd	nď	nd	nd	nd
ETHYLBENZENE	nd	nd	nd	nd	nd	nd	nd
TOLUENE	nd	nd	nd	nd	nd	nd	nd
m&p-XYLENES	nd	nd	nd	nd	nd	nď	nd
o-XYLENE	nd	nd	nd	nd	nd	nd	nd
SURROGATES							
1,4 DIFLUORO BENZENE	94%	103%	99%	95%	98%	106%	102%
4 BROMOFLUORO BENZENE	88%	93%	91%	86%	89%	98%	91%

ANALYSES PERFORMED ON-SITE IN CA DOHS MOBILE LABORATORY (CERT #1745)

ANALYSES PERFORMED BY: MARK BURKE